
FakeMagnoliaUI future 1

FakeMagnoliaUI future
What to do with the JcrFormEvironment

Option1 Migrate JcrFormEnv → FMUI

no need to do extra work there right now, the technical debt isn't big

✅Option2 Do not migrate anything yet → migrate everything to JUnit5
setup

would save time

when proper JUnit 5 extensions land - we move all the test together

JcrFormEnv and FMUI aren't so different, should be easy to take care of
them at once

How to proceed extracting the FMUI from the fw-jcr artifact
Where we want the FMUI to be?

FMUI extension will be in UI reactor itself

What to do with the dependency on the framework itself?

FMUI depends heavily on UI.fw parts

it would only be possible to write the FMUI-involving tests for the
ui.fw-core if FMUI was in the fw-core/test

or we (realistically) can concentrate the end-2-end tests not in the
UI.fw core, but in reference implementations JCR/REST and in
concrete modules

We need repo support [in JUnit 5 (from core)

most of the times we're good with mock sessions, sometimes - with real
ones

ideally - it's the test setup (annotations/extensions etc) drive the
flavour of JCR support (mock/real)

currently there's a PoC by Evzen

FakeMagnoliaUI future 2

not integrated, cannot be a part of test fw (yet), because of strong
dependencies to core codebase

will probably reside in core reactor for the time being (maybe a
separate artifact)

What to do to turn FMUI to JUnit 5 setup
How do we even write the tests and populate the mock environment

Breaking down the DSL

magnoliaUI
 .withLightModuleName("fooModule") // similar things are done for UI tests with
 @LightModule annotation, can be separate ext
 .withModule("ui-framework-jcr") // same here probably (???)
 .readContentTypes()
 .withI18(Locale.GERMAN)
 .withJcrWorkSpaces("config") // could be chipped out in a separate ext
 .start();

IoC

connect JUnit 5 param resolution with the Mgnl Component Provider for
seamless injection of components in test vs
magnoliaUI.getComponentProvider().getComponent(...class)

Jcr repo support

to be provided as part of the effort in the core (take Evzens PoC further)

Admincentral setup

primitives like app/sub-app ctx's and AppController/LocationControllers
etc to be provision-able with the IoC effort (🤞)

Concerns
calculating coverage might be a tad tedious with end-to-end tests

FMUI implicitly increases the coverage but that is not reflected in numbers

FakeMagnoliaUI future 3

Simple JUnit tests still [should] provide the sufficient coverage on their
own (and we're less concerned by the coverage brought in by the end-to-
end tests)?

Extraction of functionality should encourage test coverage distribution
somewhat (although the current tests will probably remain in the fw-jcr)

Still the point is valid - how do we quantify the test coverage

TODO check the possibilities with clover maybe, although the hope is
slim there

Point: the fact that the upstream code is used in the test doesn't mean
that the test actually tests it (it uses it merely) and probably shouldn't be
considered in coverage?

Very similar issue with UI tests (even worse so)

Ticketising strategy
Use https://jira.magnolia-cms.com/browse/BUILD408 as starting point

Start with the outline of basic extensions that supersede the FMUI, just a
skeleton

consider the maven coordinates (separate artifact probably? in core and
UI, would be cleaner and would let us avoid inter-deps and such)

we do not touch the JUnit 4 based facilities FMUI/FormEnv)

do not port the test

Go step by step

ensure that we can provision the UI/Sessions

outline extensions for IoC

finalisation of core efforts re: JCR repo support and such

porting the tests (effort shouldn't be dramatic, it should be much easier
to update those)

https://jira.magnolia-cms.com/browse/BUILD-408

